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Outline
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Experiment Theory

• Strange Quarks in the Nucleon
• Electron and Proton Interactions
• Nucleon Structure
• Parity Violating Electron Scattering
• Axial Vector Form Factor
• Previous Results



Strange Quarks in the Nucleon
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Strange quark contribution to
nucleon properties:

– Momentum: 4%
– Spin: 10%              controversial
– Mass 30%
– Charge distribution?
– Current distribution?
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valence quarks

“non-strange” sea (u, u, d, d) quarks

“strange” sea (s, s) quarks

Goal of G0: to determine
contributions of strange quark
sea to electromagnetic
properties of the nucleon



Electron and Proton Interactions

Amplitude of electron-proton interaction ZM M Mγ= +
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Asymmetry

• Electromagnetic Force
– Charge dependent
– Parity conserving

• Weak Force
– Carrier particles: W+, W- and Z bosons
– Z0 interaction charge independent, parity violating
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Nucleon Structure
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Two unknowns, two equations.
But how do we measure the GZ . . .

Assume charge
symmetry
(good to 1%)
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Strange quark form factors



Parity Violating Electron Scattering
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Forward Angles Backward Angles

Kinematic Factors

Scatter longitudinally polarized electrons from unpolarized nucleons . . .

At a given Q2 decomposition of Gs
E, Gs

M, Ge
A

Requires 3 measurements:
Forward angle  e + p  (elastic)
Backward angle e + p  (elastic)
Backward angle e + d  (quasi-elastic)

G0 will perform all three
measurements at two

different Q2 values

nucleon's axial 
vector form 
factor as seen 
by an electron 



Axial Vector Form Factor
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Previous Results
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e  +  p elastic :          Ap = −5.61± 0.67 ± 0.88 ppm
r 
e  + d quasielastic :  Ad = −7.77 ± 0.73± 0.62 ppm
    GM

s (Q2 = 0.1GeV2)  =    0.37 ± 0.20 ± 0.26 ± 0.07

SAMPLE at MIT-Bates Linear Accelerator
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s = 0.039 ± 0.034
at Q2 =  0.230 GeV 2

HAPPEX in Hall A at Jefferson Lab

A4 at the Mainz Microtron
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Experiment Overview
• Experiment Schematic
• Forward Angle Mode

– Strangeness Form Factors
• Backward Angle Mode

– Backward Angle Configuration
– Cryostat Exit Detectors
– π- Backgrounds
– π- Rates
– Parity Quality Beam Specifications
– Pockels Cell Alignment

• Backward Angle Tentative Schedule



Experiment Schematic
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Forward Angle mode

All measurements at 1 beam energy
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magnet

target

e–
Backward Angle mode

Measurements at 2 separate beam energies



Forward Angle Mode
• 40 μA polarized electron beam
• Electron beam energy 3.0 GeV
• Beam bunches separated by 32 ns 

(31.25 MHz )
• Detect recoil protons 
• Strained GaAs
• Target: liquid hydrogen
• One energy setting for all Q2  (0.1-1.0 

GeV2)
• ANVS: -1.96 ppm to -48.61 ppm
• Spectrometer sorts protons by Q2 in 

focal plane detectors
• Time-of-flight separates p (~20 ns) 

from π+ (~8 ns)
• Status:

– Run completed in May 2004 (began in 
November 2003)

– 744 hours of parity quality beam (103 
Coulombs)



Strangeness Form Factors

• η ≈ (0.81-0.93)×(Q2/GeV2) with the Kelly form factors
• hypothesis excluded at 89% CL
• Error bars: inside = stat., outside = stat. & pt-pt syst.

0s s
E MG G= ≡



Backward Angle Mode
• 80 μA polarized electron beam
• Standard CEBAF time structure 

(499 MHz)
• Detect scattered electrons
• Target: liquid hydrogen and 

deuterium 
• Superlattice GaAs
• One energy/magnet setting per Q2

– E = 360, 687 MeV
• 700 hours of beam per run
• ANVS: -15 ppm to -50 ppm
• Additional Detectors:

– Cryostat Exit Detectors (CEDs) -
separate elastic and inelastic 
electrons by trajectory

– Cerenkov Detectors - pion
detection

• First data run in early 2006

beam
Q2 ∝ Ebeam

magnet

target

e–
Backward Angle mode

Measurements at 3 separate beam energies



Backward Angle Configuration



Cryostat Exit Detectors
• Measure back scattered 

electrons 
• 9 detectors per octant
• CED-FPD coincidence to 

separate elastics/inelastics
electrons
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π- Backgrounds
• Negatively charged pions will produce a large 

background to the rates
• Photo-production near delta resonance

– Hydrogen target
• γ + p → π+ + n
• γ + p → π0 + p
• γ + p → π- + Δ++ → π- + (p + π+)   X

– Deuterium target
• γ + d → π0 + n + p
• γ + d → π- + p + p
• γ + d → π+ + n + n

• Cross Sections
– Measured using Short Order Spectrometer (SOS) in Hall C
– GRAAL simulations
– MAID-based calculations



π- Rates
• Rates are proportional to the size 

of the box
• Hydrogen: By selecting certain 

CED/FPD combinations, we can 
separate:

– Elastic and inelastic electrons
• Deuterium:

– Negative pion rates considerably 
larger

– Large pion contamination prevents 
measurement of asymmetry so we 
need additional particle 
identification (aerogel Cherenkov
detector)

Black: elastic e- rates
Red: inelastic e- rates
Green: π- Rates

hydrogen

deuterium



Property Nominal Max 
deviation

Helicity
“noise”
1/30th

Other
“noise”

e.g. 60 Hz

Run
averaged
helicity

correlation

Forward
Specified

Forward 
Achieved

Energy 687, 360 
MeV

±0.1% 0.003%
(105um)

0.01%
(350 um)

<5x10-8

(180 nm)
<75 eV 29 ± 4 eV

Energy Spread <0.1% <0.1%

CW Intensity 80 μA
(100 uA)

± 5% 0.2% 1.0% <2 ppm <1 ppm -0.14 ± 0.32 ppm

Position at Target “0” ± 0.2 mm 20 μm 0.2 mm <40 nm <20 nm 4 ± 4 nm

Angle at Target “0” ± 0.05 mrad 2 μrad 0.02 mrad <4 nrad <2 nrad 1.5 ± 1 nrad

Divergence at 
Target

100 μrad ± 50%

Unrastered RMS 
Size at Target

200 μm ± 25% 20 μm 0.2 mm 4 μm ? ?

Polarization >70%

Halo at Target <10-6 outside 
3 mm radius

<0.2% of
nominal

? ?

Parity Quality Beam Specs
desired central
value

how far central
value can shift

std dev between diffs of
2 successive integration
periods

upper limit on
random noise

max value of hc
diff or asym



Laser Systematics

• Types and sources of laser systematics
• What is a Pockels Cell?
• Why do we care about laser systematics?
• Controlling laser systematics



Types and Sources of Laser 
Systematics

• Helicity Correlated Charge Asymmetry
– In making circularly polarized light, there are 

small admixtures of linear polarization which 
cause a small degree of ellipticity

• Helicity Correlated Position Differences
– Phase gradient across the laser spot
– Gradient in analyzing power of cathode
– Pockels Cell Steering effects

What is this?



What is a Pockels Cell?
• Acts as a quarter-

wave plate and 
changes linearly 
polarized light to 
circular.

• Retardation flips sign 
pseudorandomly on a 
pulse by pulse basis, 
generating circularly 
polarized light of 
either helicity.



Why Do We Care About Laser 
Systematics?

• Helicity correlations in laser light → helicity
correlation correlations in electron beam

• Critical to achieving accurate 
measurements



Controlling Laser Systematics

• Helicity Correlated Charge Asymmetry
– Phase adjustments: apply voltage to PC to zero 

asymmetry
– IA Cell: charge asymmetry varies with voltage
– Rotatable half waveplate: charge asymmetry 

varies with angle
• Helicity Correlated Position Differences

– Minimize steering: center laser beam on PC
– Minimize phase gradient: center laser beam on 

PC to zero phase gradient



Tentative Schedule
• First Run Period (687 MeV, 1 pass, high Q2 measurement)
• G0 accelerator commissioning 3/15 & 3/16
• G0 physics commissioning 3/17-4/2
• G0 physics production run 4/3-4/29

• Second Run Period (360 MeV, 1 pass, low Q2 measurement)
• G0 accelerator commissioning 7/21 & 7/22
• G0 physics production run 7/23-9/1

• Third Run Period (687 MeV, 1 pass, high Q2 measurement)
• 9/22-12/22



Expected Results

• Electric and Magnetic Strange Form 
Factor

• Isovector Axial e-N Form Factor



Expected Electric and Magnetic 
Strange Form Factor Results



Expected Isovector Axial e-N Form 
Factor Results
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